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A Caching Network
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Nodes in the network store content items (e.g., files, file chunks)



A Caching Network
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Nodes generate requests for content items

?



A Caching Network

Adaptive Caching Networks w. Optimality Guarantees3

Requests are routed towards a content source

?
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Responses routed over reverse path

A Caching Network
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?

A Caching Network

Nodes have caches with finite capacities
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?

Nodes have caches with finite capacities

A Caching Network
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Requests terminate early upon a cache hit

?

A Caching Network
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?

Example: Named Data Networks
Webserver

User

cache-enabled
routers



Optimal Content Allocation
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Q: How should items be allocated to caches so that 
routing costs are minimized? 



Optimal Content Allocation
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Challenge: Caching algorithm should be 
 adaptive, and
 distributed.
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 Cache item on every node in the reverse path
 Evict using a simple policy, e.g., LRU, LFU, FIFO 

etc.

?

A Simple Algorithm: Path-Replication [Cohen and Shenker 2002]
[Jacobson et al. 2009]

 Distributed
 Adaptive
 Popular!



But…
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Path Replication combined with traditional eviction policies 
(LRU, LFU, FIFO, etc.) is arbitrarily suboptimal.



Path Replication + LRU is Arbitrarily Suboptimal
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? ?

Cost of PR+LRU: 

Cost when caching      :

 When M is large, PR+LRU is arbitrarily 
suboptimal!

 True for any strategy (LRU,LFU,FIFO,RR) 
that ignores upstream costsrequests per sec



 Formal statement of offline problem
 NP-Hard [Shanmugam et al. IT 2013]

 Path Replication +LRU, LFU, FIFO, etc. is arbitrarily suboptimal

 Distributed, adaptive algorithm, within a constant approximation 
from optimal offline allocation

 Path Replication+novel eviction policy
 Great performance under 20+ network topologies

Our Contributions

Adaptive Caching Networks w. Optimality Guarantees14



Problem Formulation 

Distributed Adaptive Algorithms

Evaluation

Overview
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Problem Formulation 

Distributed Adaptive Algorithms
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Model: Network
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Network represented as a directed, bi-directional graph  



Model: Edge Costs
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Each edge          has a cost/weight 

5

Edge costs: 



Model: Node Caches
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Node               has  a cache with capacity   

Node capacities: 
Edge costs: 



Model: Cache Contents
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Node capacities: 
Edge costs: 

Items stored and requested form the item catalog



Model: Cache Contents
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Node capacities: 
Edge costs: 

For             and            ,  let

if     stores  
o.w.

Then, for all           ,  



Model: Designated Sources
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Node capacities: 
Edge costs: 

For each and           ,  there exists a set of  nodes              
(the designated sources of   ) that permanently store    .

I.e.,  if              then 

, for all 



Model: Demand
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Node capacities: 
Edge costs: 

A request is a pair          such that:  

, for all 

 is an item in

 is a simple path in       such that                 .  

Requests are always 
satisfied!

?



Model: Demand
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Node capacities: 
Edge costs: 

Demand : set of all requests

?

Request arrival process is Poisson with rate

Request rates:: demand

, for all 



Model: Routing Costs & Caching Gain
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Node capacities: 
Edge costs: 

?

Request rates:: demand

, for all 

Worst case routing cost:

5
3 4

6

?Request



Model: Routing Costs & Caching Gain
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Node capacities: 
Edge costs: 

?

Request rates:: demand

, for all 

5
4

6

?

Cost due to intermediate caching:

Worst case routing cost:

Request

3



Model: Routing Costs & Caching Gain
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Node capacities: 
Edge costs: 

?

Request rates:: demand

, for all 

5
3 4

6

?

Cost due to intermediate caching:

Worst case routing cost:

Caching Gain:

Request



Caching Gain Maximization
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Node capacities: 
Edge costs: 

Request rates:: demand

, for all 

Caching Gain:

The global allocation strategy is the binary                   matrix

?
5

3 4

6

?



Caching Gain Maximization
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Node capacities: 
Edge costs: 

Request rates:: demand

, for all 

?
5

3 4

6

?
Caching Gain:

Maximize:

Subject to: ,             for all 

,             for all              and  

,                     for all              and                  



Offline Problem
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Maximize:

Subject to: ,             for all 

,             for all              and  

,                     for all              and                  

Shanmugam, Golrezaei, Dimakis, Molisch, and Caire. Femtocaching: 
Wireless Content Delivery Through Distributed Caching Helpers. IT, 2013

 NP-hard
 Submodular objective, matroid constraints

 Greedy algorithm gives ½-approximation ratio
 1-1/e ratio can be achieved through pipage rounding method 

[Ageev and Sviridenko, J. of Comb. Opt., 2004]



Pipage Rounding [Ageev & Sviridenko 2004]
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Maximize:

Subject to: ,             for all 

,             for all              and  

,                     for all              and                  



Pipage Rounding [Ageev & Sviridenko 2004]
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Maximize:

Subject to: for all 

,             for all              and  

,                     for all              and                  

Think:


 All         are independent Bernoulli random variables.   

Expected CG

Satisfied in 
expectation



Pipage Rounding [Ageev & Sviridenko 2004]
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Maximize:

Subject to: for all 

,             for all              and  

,                     for all              and                  

 Key idea: There exists a concave function            such that   



Pipage Rounding [Ageev & Sviridenko 2004]
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Maximize:

Subject to: for all 

,             for all              and  

,                     for all              and                  

 Key idea: There exists a concave function            such that   

 Algorithm Sketch: Maximize           ; round solution to obtain discrete solution    .



Problem Formulation 

Distributed Adaptive Algorithms

Evaluation

Overview

Adaptive Caching Networks w. Optimality Guarantees35



Projected Gradient Ascent
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Time is divided into slots



Projected Gradient Ascent
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Each node             keeps track of  its own marginal distribution 

0.5

0.9
0.6



Projected Gradient Ascent
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During a slot,     estimates                    by collecting measurements through 
passing packets.       

0.5

0.9
0.6



Projected Gradient Ascent
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At the conclusion of the   -th slot,    updates its marginals through: 

0.5

0.9
0.6

0.6

0.7
0.7



Projected Gradient Ascent
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After updating      , node     places     random items in its cache, independently 
of other nodes, so that: 

0.6

0.7
0.7

,                     for all 



Gradient Estimation
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How can     estimate                  in a distributed fashion?

0.5

0.9
0.6

5
3 4

6



Gradient Estimation
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When request           is generated, create a new control message 

0.5

0.9
0.6

?

5
3 4

6



Gradient Estimation
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Forward control message over path     until:

?

5
3 4

6
0.6

0.2
0.7

0.5

0.9
0.6

0.5

0.9
0.6



Gradient Estimation
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Send control message over reverse path, collecting sum of edge costs. 

?

5
3 4

6
0.6

0.2
0.7

0

0.5

0.9
0.6

0.5

0.9
0.6

+3

+8

Each node on reverse path, sniffs upstream costs, and maintains average per 
item          .

Forward until:

Average at end of slot is estimate of



Randomized Placement
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How can     place exactly items in its cache, so that marginals are satisfied?

0.5

0.9
0.6

5
3 4

6



Randomized Placement
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Suppose that I give you a                        such that                   .

Is there a  way to select exactly items at random, so that the probability 
that item   is selected is        ?

= 0.82

= 0.77

=  0.77

=  0.64



Randomized Placement: Sketch of Algorithm
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Triplets:



Theorem: For                      ,  Projected Gradient Ascent 
leads to an allocation       such that

where        an optimal solution to the offline problem. 

Convergence
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Projected Gradient Ascent (vs. Path Replication) 

 Distributed

 Adaptive

 Constant Approximation to Optimal
?

5
3

4

6
0.6

0.2

0.7

0

0.5

0.9

0.6

0.5

0.9

0.6

+3

+8

❌ Overhead for control traffic

❌ Overhead to retrieve content at end of timeslot

❌ Not so simple…
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Path-Replication + Greedy Eviction Policy

5
3 4

6

 Each node     maintains an estimate for the (sub)gradient

 At any point in time,      caches “top”      items, with highest gradients 
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Path-Replication + Greedy Eviction

5
3 4

6

+ 6
+ 10+ 13

+ 18

 A response carrying the item    adds weights on the reverse path, and 
reports them to intermediate nodes.

 Greedy Eviction: if    becomes one of the top     items, evict item with 
smallest gradient, and cache   .

?

Intuition: Greedily cache item with best “upstream gain”
Frank-Wolfe Algorithm, PSEPHOS Algorithm
[I.,Chaintreau, Massoulie,SIGMETRICS 2010]

 Weights are used to update estimate of            .



Problem Formulation 

Distributed Algorithms

Evaluation

Overview
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Multiple Topologies
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y-axis: ratio to offline solution



Joint caching & routing

PR+Greedy Eviction guarantees

Delay vs. Throughput Optimality

Broader resource management applications

Open Questions
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Thank you!
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