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Adaptive Caching Algorithms
with Optimality Guarantees
for NDN Networks

Stratis loannidis and Edmund Yeh



A Caching Network

-

Nodes in the network store content items (e.g., files, file chunks)
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A Caching Network

Nodes generate requests for content items
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A Caching Network

Requests are routed towards a content source
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A Caching Network

Responses routed over reverse path
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A Caching Network

Nodes have caches with finite capacities
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A Caching Network

Nodes have caches with finite capacities
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A Caching Network

Requests terminate early upon a cache hit
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Example: Named Data Networks

Webserver

=
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Optimal Content Allocation

Q: How should items be allocated to caches so that
routing costs are minimized?
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Optimal Content Allocation

Challenge: Caching algorithm should be
d adaptive, and
 distributed.
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[Cohen and Shenker 2002]

A Simple Algorithm: Path-Replication [Jacobson et al. 2009]
)
I
» -
R”
v Distributed
v' Adaptive
v Popular!

O Cache item on every node in the reverse path
O Evict using a simple policy, e.g., LRU, LFU, FIFO
etc.
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Path Replication combined with traditional eviction policies
(LRU, LFU, FIFO, etc.) is arbitrarily suboptimal.
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Path Replication + LRU is Arbitrarily Suboptimal

E D Cost when caching k) :
0.5x14+05x2=1.5
1 }
M. Cost of PR+LRU:
0.25x (M + 1) +0.25 x 1+
+0.25 x 24025 x 1 = 0.25M +1.25

1 0 When M is large, PR+LRU is arbitrarily
suboptimal!

O True for any strategy (LRU,LFU,FIFO,RR)

Aee = A = 0.5 requests per sec .
AHesE P that ignores upstream costs
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Our Contributions

0 Formal statement of offline problem
O NP-Hard [Shanmugam et al. IT 2013]

O Path Replication +LRU, LFU, FIFO, etc. is arbitrarily suboptimal

O Distributed, adaptive algorithm, within a constant approximation
from optimal offline allocation

O Path Replication+novel eviction policy
O Great performance under 20+ network topologies
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Overview

JProblem Formulation
Distributed Adaptive Algorithms

JEvaluation
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Overview

JdProblem Formulation
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Model: Network

Network represented as a directed, bi-directional graph G(V, F)
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Model: Edge Costs

G<V7 E) Edge costs: Wy, (u,v) € E

Each edge (u,v) € E has a cost/weight w,,,

) Northeastern
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Model: Node Caches

G<V7 E) Edge costs: Wy, (u,v) € E

Node capacities: C,,v € V

Node v € V has a cache with capacity ¢, € N
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Model: Cache Contents

G<V7 E) Edge costs: Wy, (u,v) € E
Node capacities: C,,v € V
C={Rbhb}

Items stored and requested form the item catalog C
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Model: Cache Contents

G<V7 E) Edge costs: Wy, (u,v) € E
Node capacities: C,,v € V
C={Rbhb}

ForveV and 72 € C, let

1, if vstores 17
Lyi =
0, 0.W.

Then, forall v € V', Zflim < ¢y
icC
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Model: Designated Sources

G(V, E) - Edge costs: Wy, (u,v) € E
Node capacities: C,,v € V

mej < ¢y, foralv eV
1eC

For each and ¢ € C, there exists a set of nodes S; C V
(the designated sources of ¢) that permanently store z.

le., if ves; then z,; =1
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Model: Demand

G<Va E) Edge costs: Wy, (u,v) € E
. Node capacities: C,,v € V
C_{DED} megcv,forallvev

1eC

Requests are always

A request is a pair (7, p) such that: satisfied!

Q 72 isanitemin C

Qp={p1,...,px} isasimplepathin (G suchthatpyx € S;.
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Model: Demand
G(V,E)

C={Rhb}
R : demand

Demand R.: set of all requests (z’,p)

Edge costs: Wy, (u,v) € E
Node capacities: C,,v € V

me < ¢y, forall v eV
ieC ,
Request rates: A¢; p), (1,p) € R

Request arrival process is Poisson with rate )\(i,p)
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Model: Routing Costs & Caching Gain

G<Va E) Edge costs: Wy, (u,v) € E
Node capacities: C,,v € V
C_{DEQ} megcv,forallvev
ieC
R : demand Request rates: A(; ), (i,p) € R
Request [[)?
(2, p)
- : [p[—1
Worst case routing cost: be1 Wpiips
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Model: Routing Costs & Caching Gain

G(V,FE)

Edge costs: Wy, (u,v) € E
Node capacities: C,,v € V

C:{DEQ} megcv,forallvev
1eC
R : demand ™ - 6 Requegt rates: A p): (i,p) € R
»
W 3 |[B4
5
Request [
(2, p)
. 1
Worst case routing cost: Zlkpll Wy 1 pi
. . . —1 k
Cost due to intermediate caching: l,fil Wpps1pp L g (1 —2p )
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Model: Routing Costs & Caching Gain

G<Va E) Edge costs: Wy, (u,v) € E
o Node capacities: C,,v € V
C_{DED} megcv,forallvev

1eC
R : demand ™ - 6 Requegt rates: A p): (i,p) € R
N
W 3 |4
5
Request | 7
(2, p)

- : [p|—1

Worst case routing cost: b1 Wpii1pr
. . . —1 k
Cost due to intermediate caching: l,fil Wpps1pp L g (1 —2p )
. . —1 k

Caching Gain: S Wy (1 — [ (1= ﬂfpk,i))
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Caching Gain Maximization
G(V,E) E

C={Rhb}
R : demand

B>

Edge costs: Wy, (u,v) € E
Node capacities: C,,v € V

me < ¢y, forall v eV
ieC
Request rates: A p), (1,p) € R
Caching Gain:

-1 k
Z‘kp:‘l Wpp, 41k <1 - Hk/:l(l - xpk’i))

The global allocation strategy is the binary |V'| X |C| matrix

X = [xvi]vév,iec
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Caching Gain Maximization

G(V, E) H Edge costs: Wy, (u,v) € E

_ Node capacities: C,,v € V
C_{DED} megcv,forallvev
iecC
R : demand 7 Requegt rates: A p): (i,p) € R
Caching Gain:
ZLp:‘Il Wpy11pk <1 - HZ/:l(l - xpk’i))
MAxXCG
. . |p|—1 k
Maximize:  F'(X) = Z Aip) 2obm1 Woppaps (L — =1 (T —2p,,,)
(t,p)ER
Subject to: Z%z’ = Cy, forall v € V
1eC
Tpi = 1, forall i € C and v € .5;
Tyi € {O, 1}, forall v € Vand ¢t € C
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Offline Problem

- ~1 k
Maximize: F'(X) = Z A(i,p) E'kp:'1 Wpp 1P (1 — (1= iUpk/i))

(i,p)ER
Subject to: ZZEW; = Cy, forall v e V
ieC
Toyi = 1, forall i € C and v € 5;
Ty € {O, 1}, forall v € Vand 1 €C

Shanmugam, Golrezaei, Dimakis, Molisch, and Caire. Femtocaching:
Wireless Content Delivery Through Distributed Caching Helpers. IT, 2013

O NP-hard
O Submodular objective, matroid constraints
O Greedy algorithm gives Y2-approximation ratio
O 1-1/e ratio can be achieved through pipage rounding method
[Ageev and Sviridenko, J. of Comb. Opt., 2004]
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Pipage Rounding [AgeeV & Sviridenko 2004]

. —1 k
vaximize:  F(X) = > A SP wp i (1= TTHoy (1= 2p,.,))

(i,p)ER
Subject to: Z%z’ = Cy, forall v e V
ieC
Toyi = 1, forall i €C and v € 5
Ty € {0, 1} forall v € Vand i €C
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Pipage Rounding [AgeeV & Sviridenko 2004]

. —1 k
Maximize: F(Y) — Z )‘(’i,p) Z|kp:|1 Wpp, 1 (1 — Hk’:l(l B ypk;’z‘))

(i,p)ER
Subjectto: D _Yui=cCu,  forall veV ected GG
z;g@ =1, forall i € C and v € 5;
Satisfied in [ Yui € [0, 1] ] forall v € Vand ¢ €C

expectation

Think:
M Yovi = P(xm — 1)

a All x,; are independent Bernoulli random variables.

) Northeastern
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Pipage Rounding [AgeeV & Sviridenko 2004]

. —1 k
Maximize: F(Y) — Z )‘(’i,p) Z|kp:|1 Wpp, 1 (1 — Hk’:l(l B ypk;’z‘))

(i,p)ER
Subject to: Z Yvi = Cu, forall v e V
ES@ =1, forall i€ C and v € 5;
Ypi € 10,1] , forall v € Vand i €C

Q Key idea: There exists a concave function L(Y') such that

(1 2)L(Y) < F(Y) < L(Y)

Northeastern
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Pipage Rounding [AgeeV & Sviridenko 2004]

- —1 . k
Maximize:  L(Y) = Z A(i,p) Lpzll Wy prpe ML L, D 0 Ypr i

(i,p)ER
Subject to: Z Yvi = Cu), forall v e V
ieC
;m =1, forall i €C and v € 5 \’\“6 \’LQO
Ypi € (0,1] | forall v e Vand ¢t €C OQ? «@PV
o
Q Key idea: There exists a concave function L(Y') such that
1
(1--)LY) < F(Y) < L(Y)
&

Q Algorithm Sketch: Maximize L(Y'); round solution to obtain discrete solution X.

<2 Northeastern
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Overview

Distributed Adaptive Algorithms
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Projected Gradient Ascent
C={hhh}

Time is divided into slots
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Projected Gradient Ascent
C:{Q » D} Y = [yv]UEV

0.5
00.9
W 0.6

Each nodev € V keeps track of its own marginal distribution y,, € [0, 1]|C|

) Northeastern
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Projected Gradient Ascent
C:{D E D} Y — [y'U]'UEV L(Y) - Z )‘(i,p) Z|k:p:|;1 Wpp 4 1pk min{lazz’zl ypﬁci}

(i,p)ER

0.5
00.9
W 0.6

During a slot, v estimates V,,, L(Y") by collecting measurements through
passing packets.

) Northeastern

38 Adaptive Caching Networks w. Optimality Guarantees



Projected Gradient Ascent

C — {D E D} Y — [y'U]'UEV L(Y) - Z )‘(i,p) Z|k:p:|;1 Wpp 1Dk min{lv Zz’zl ypﬁci}
(i,p)ER
D 0.6 Dv — {ym s.t. Zyvi = Cy, Yuvi € [07 1]}
0o.7 ieC

W 0.7

At the conclusion of the k-th slot, v updates its marginals through:

Yo < Up, (yy + 7 Vy, L(Y))

) Northeastern
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Projected Gradient Ascent

C:{D E D} Y — [y’v]’UEV L(Y) = Z )‘(i,p) Z|k;p:|;1 Wpp 1Dk min{lazz’zl ypﬁci}
(i,p)ER
D 0.6 Dv — {yw s.t. Zyvi = Cy, Yvi € [07 1]}
Y, W 0.7 i€C
DN (w07
-
(Y

After updating v, , node v places ¢y, random items in its cache, independently
of other nodes, so that:

P(xyi =1) = yuyi , forall i € C
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Gradient Estimation
C:{D E D} Y — [yv]vEV L(Y) - Z )‘(i,p) Z|k;p:|;1 wpk-i-lpk min{lazz’zl ypﬁci}

0.5
m 00.9
W 0.6

How can v estimate V,, L(Y") in a distributed fashion?

) Northeastern
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Gradient Estimation
C:{D E D} Y — [yv]vEV L(Y) - Z )‘(i,p) Z|k;p:|;1 wpk-i-lpk min{lazz’zl ypﬁci}

0.5
m 00.9
W 0.6

When request (i, p) is generated, create a new control message
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Gradient Estimation
C:{Q » D} Y = [yv]UEV

~1 : k
L(Y) = Z A(i,p) Z|k;p:|1 Wpyapp MIn{1, >0 yp;i}

(i,p)ER
-
D Yo 0.9
Tio.z ~ 6
- 4
3
5 (V)
-
"
k
Forward control message over path p until: Z Yp,,i > 1
k'=1
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Gradient Estimation
C:{D » D} Y = [yv]vEV L(Y) = Z )\(ivp)zlpl—l min{l,zz,zl Ypli

k=1 wpk-l-lpk

(i,p)ER
N fj 1
Forward until: Yp, i >
D y'U 209 k'=—1 *
Wo0.2 | °
iﬁ ) _N g
5 U o
E 5 E +8

Send control message over reverse path, collecting sum of edge costs.

Each node on reverse path, sniffs upstream costs, and maintains average per
item ¢ € C.

: . OL(Y
Average at end of slot is estimate of )

8%@'
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Randomized Placement
C:{D E D} Y — [yv]vEV L(Y) - Z )‘(i,p) Z|k;p:|;1 wpk-i-lpk min{lazz’zl ypﬁci}

0.5
m 00.9
W 0.6

How can v place exactly ¢, items in its cache, so that marginals are satisfied?

45  Adaptive Caching Networks w. Optimality Guarantees Northeastern




Randomized Placement

C={1,2,3,4} ?M:

Cy =3 Yu2 =[0.77

Yv3=|0.64 ieC

X Yvd =

Suppose that | give you a vy, € |0, 1]|C| such that Zym = Cy,

1eC
Is there a way to select exactly C, items at random, so that the probability
that item< is selected is Uq;?
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Randomized Placement: Sketch of Algorithm

1
Yol
NN DO S
Yu2 I I
I I Cp = 3
You3 I I
Yova I I
I | |
«— U1 —>|< 2 =|‘—M3 —’I‘—/M 7

Triplets: @ @
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Convergence

Theorem: For v, = 1/\/E , Projected Gradient Ascent
leads to an allocation X such that
1

lim E[F(X,)] > (1-2)F(X")

k— 00

where X™ an optimal solution to the offline problem.
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Projected Gradient Ascent (vs. Path Replication)

N
v" Distributed 2 | 09
. o2 - °
v’ Adaptive ?D Sl
5 % E e ° E 0
v" Constant Approximation to Optimal B
R’

X Overhead for control traffic
X Overhead to retrieve content at end of timeslot

X Not so simple...
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Path-Replication + Greedy Eviction Policy

Q Each node v maintains an estimate for the (sub)gradient 0y, L(X)

O At any pointin time, v caches “top” ¢, items, with highest gradients IL(X)
(9,%7:

) Northeastern

50 Adaptive Caching Networks w. Optimality Guarantees



Path-Replication + Greedy Eviction

Intuition: Greedily cache item with best “upstream gain”

Frank-Wolfe Algorithm, PSEPHOS Algorithm ™
[l.,Chaintreau, Massoulie,SIGMETRICS 2010] A
a M

W 3 |4

A - X
S\ i
)+ 18

(4, p)

O Aresponse carrying the item ¢ adds weights on the reverse path, and
reports them to intermediate nodes.

O Weights are used to update estimate of OLX)

8yvi )
O Greedy Eviction: if 2 becomes one of the top ¢, items, evict item with
smallest gradient, and cache %.
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Overview

JEvaluation
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Multiple Topologies

PGA10 [ PGA20

y-axis: ratio to offline solution

(CETEN
S=a=ll
& 53

S NS

| b
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Open Questions

dJoint caching & routing

JPR+Greedy Eviction guarantees

dDelay vs. Throughput Optimality

d Broader resource management applications
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