

A Native Content Discovery Mechanism for NDN

Onur Ascigil, Vasilis Sourlas, Ioannis Psaras, and George Pavlou Department of Electronic and Electrical Engineering, University College London, UK

Outline

- Content discovery
- Opportunistic Off-path Content Discovery
- Forwarding Strategies
- Results
- Future Work & Conclusions

Content Discovery

Content Discovery

- Goal: Retrieve a nearby (ideally the nearest!) copy of the content
 - Difficult to achieve without significant ``overhead'' in practice
- Why?
 - Placement of Data into the Content Stores happens frequently
- What does NDN/CCN do?
 - Route Interests to content origins
 - Search content opportunistically **on-path** (i.e., along the default path)
- Existing Solutions for Content Discovery:
 - Opportunistic on-path
 - Coordinated off-path

Content Discovery

- **Opportunistic on-path:** *limited gain, without overhead*
- **Coordinated off-path:** coordination and communication overhead
 - Using control plane: Advertise content names
 - Using a function: A Hash function determines the placement and routing

• What do we propose?

• ...

- integrate an "opportunistic off-path content discovery mechanism" to the existing Interest/Data processing pipeline of NDN
 - With minimal changes to NDN packet processing
 - Without introducing excessive overhead

Opportunistic Off-path Content Discovery

Opportunistic off-path Content Discovery

• Satisfied Interest Table (SIT): Caches trails of Data packets

• Breadcrumb

• Breadcrumb

• Multicast

- Multicast: Once forwarded downstream, an Interest follows a single SIT trail
- Forwarding Strategy: Pick the freshest matching SIT entry

- Multicast: Once forwarded downstream, an Interest follows a single SIT trail
- Forwarding Strategy: Pick the freshest matching SIT entry

Results - Multicast and Breadcrumb Strategies

Results- Settings

- **Topology**: Rocketfuel ISP topology
- Content Providers: Attached to 16 egress nodes are randomly chosen
- Link Latencies: Penalty for leaving ISP network: extra 50-100 msec
- Network Cache Capacity: %80 of content can be cached in the network
- **Request Rate**: 100 Requests/sec (origins selected randomly)
- **Popularity Distribution**: Zipf Parameter 0.7
- Experiment Duration: 1 Hour warm-up and 3 hours of experiment

Results with Breadcrumb & Multicast

Results

Modified Multicast Strategy:

- Each Interest is associated with a Forwarding Budget
 - spend the budget on:
 - sending a copy upstream (following FIB)
 - sending a copy downstream (following SIT)
 - spend it on both
- **Cost** of sending Interest upstream/downstream
 - Static: Deduct one unit per each copy sent downstream.
 - **Dynamic:** Deduct variable amount per each copy sent downstream

Multicast with Forwarding Budget (Static)

Results - Multicast with Forwarding Budget

Results - Multicast with Forwarding Budget

Satisfaction

Conclusions

- Opportunistic content discovery using **SIT table**
 - Significant increase in the percentage of requests satisfied from the caches
- Forwarding strategies using SIT/FIB are introduced
 - Possible to limit the overhead with a Forwarding Budget and Dynamic Costs
 - Requires minimal changes to the packet processing of NDN
- Security
 - End-user/host caches are not exploited by the mechanism
 - *Exclude* field can be used to ignore matching SIT entries
 - Our scheme inherits the existing cache poisoning problems with NDN

Thank you!

Questions?

