THE HIERARCHICAL STRUCTURE OF NETWORKS

Aaron Clauset Santa Fe Institute

4 August 2008 SFI / CAIDA Workshop Networks and Navigation

FIRST, SOME PICTURES

social groups or communities

functional(?) clusters, hierarchies

proteins

co-purchasing (topical?) groups

A QUESTION

How can we extract

- structural patterns
- at many scales
- in a rigorous fashion

from complex networks?

WHAT IS STRUCTURE?

some stylized ideas

no structure

modular structure no structure

one scale

hierarchical structure modular structure no structure multi-scale one scale

A QUESTION

How can we extract

- hierarchical structure
- in a rigorous fashion

from complex networks?

ONE APPROACH

Model-based inference

- 1. describe how to generate hierarchies (a model)
- 2. "fit" model to empirical data
- 3. test "fitted" model
- 4. extract predictions + insight

A MODEL OF HIERARCHY

A MODEL OF HIERARCHY

model

"inhomogeneous" random graph

 $Pr(i, j \text{ connected}) = p_r$ $= p_{\text{(lowest common ancestor of } i,j)}$

MODEL FEATURES

- explicit model = explicit assumptions
- very flexible (many parameters)
- captures structure at all scales
- arbitrary mixtures of assortativity, disassortativity
- learnable directly from data

LEARNING FROM DATA

- We use a **Bayesian approach**:
- likelihood function $\mathcal{L} = \Pr(|\text{data}||\text{model}|)$ \mathcal{L} scores quality of model
- sample high quality models via MCMC
- technical details in arXiv: physics/0610051 and Nature 453, p98 (2008)

FROM GRAPH TO ENSEMBLE

FROM GRAPH TO ENSEMBLE

- Given graph *G*
- run MCMC to equilibrium
- then, for each sampled \mathcal{D} , draw a **resampled** graph G' from ensemble

A test: do resampled graphs look like original?

DEGREE DISTRIBUTION

CLUSTERING COEFFICIENT

DISTANCE DISTRIBUTION

MISSING LINKS

A test: can model predict missing links?

PREDICTING IS HARD

- ullet remove k edges from G
- how easy to guess a missing link?

$$p_{\text{guess}} \approx \frac{k}{n^2 - m + k}$$

$$= O(n^{-2})$$

$$n = 75$$

$$m = 113$$

$$p_{\text{guess}} = k/(2662 + k)$$

PREDICTING MISSING LINKS

- ullet Given incomplete graph G
- run MCMC to equilibrium
- then, over sampled \mathcal{D} , compute average $\langle p_r \rangle$ for links $(i,j) \not\in G$
- predict links with high $\langle p_r \rangle$ values are missing

Test idea via leave-k-out cross-validation

perfect accuracy: AUC = 1

no better than chance: AUC = 1/2

MISSING STRUCTURE

simple predictors

OTHER NETWORKS

SUMMARY

- Many real networks are hierarchically modular
- Hierarchies can
 - model multi-scale structure
 - generalize a single network
 - predict missing links
- Model-based inference is very powerful

Acknowledgments:

C. Moore, M.E.J. Newman, C.H. Wiggins, and C.R. Shalizi

FIN

MARKOV CHAIN MONTE CARLO (MCMC)

Given \mathcal{D} , choose random internal node

Choose random reconfiguration of subtrees

[ergodicity]

Recompute probabilities $\{p_r\}$ and likelihood \mathcal{L}

Sampling states according to their likelihood

[detailed balance]

three subtree configurations

(up to relabeling)

GRAPH RESAMPLING

1. SUMMARY STATISTICS

degree distribution

distance distribution

rich-club distribution

short-loop distribution betweenness function

degree-degree correlations

... etc.

1. SUMMARY STATISTICS

The good

- good for exploratory analysis
- often quick calculations

The bad

- throw away important information
- can make different networks appear similar
- what are right statistics to measure?
- different statistics often highly correlated
- indirect measures of large-scale structure, function

2. ALGORITHMIC ANALYSIS

global modularity Q

local modularity R

network motifs

box covering

clique covering

... etc.

2. ALGORITHMIC ANALYSIS

The good

- good for exploratory analysis
- illustrate large-scale structure, heterogeneity

The bad

- often (NP-)hard optimizations
- can be sensitive to noise, uncertainty
- ad hoc or heuristic measures of structure, function
 - algorithm = theory
 - implied physics often unclear

3. STATISTICAL INFERENCE

hierarchical random graphs

latent space models

correlation reconstruction

community mixtures

$$I(X;Y) = H(X|Y)$$

information bottlenecks

network classification

3. STATISTICAL INFERENCE

The good

- model-based measures of structure
- concrete, testable predictions
- better robustness to noise, uncertainty
- well-grounded in computer science, statistics

The bad

- models must be explicit, precise
- often hard computations
- data intensive

TWO CASE STUDIES

NCAA Schedule 2000

$$n = 115$$
 $m = 613$

Zachary's Karate Club

$$n = 34$$
 $m = 78$

MIXING TIMES

MCMC mixes relatively quickly

Equilibrium in $O(n^2)$ steps

HIERARCHIES

point estimate

consensus hierarchy

HIERARCHIES

point estimate

consensus hierarchy