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FIRST, SOME PICTURES




social groups or communities

research collaborations
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functional(?) clusters, hierarchies
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co-purchasing (topical?) groups
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A QUESTION

How can we extract
* structural patterns
* at many scales
* in a rigorous fashion

from complex networks?




WHAT IS STRUCTURE?

some stylized ideas




no structure
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one scale
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A QUESTION

network data
How can we extract

e hierarchical structure
* in arigorous fashion

from complex networks?

?
: \l/ hierarchy




ONE APPROACH

Model-based inference
1. describe how to generate hierarchies (a model)
2. “fit” model to empirical data

3. test “fitted” model

4. extract predictions + insight




A MODEL OF HIERARCHY

D‘




A MODEL OF HIERARCHY

.

D, {pr} @

probability D,
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“inhomogeneous” random graph

instance

Pr(i, j connected)

— P(lowest common ancestor of 4,5)
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MODEL FEATURES

explicit model = explicit assumptions

very flexible (many parameters)

captures structure at all scales

arbitrary mixtures of assortativity, disassortativity

learnable directly from data




LEARNING FROM DATA

We use a Bayesian approach:
likelihood function £ = Pr( data | model )

L scores quality of model
sample high quality models via MCMC

technical details in arXiv : physics/0610051 and
Nature 453, p98 (2008)




FROM GRAPH TO ENSEMBLE




FROM GRAPH TO ENSEMBLE

e Given graph GG
e run MCMC to equilibrium

e then, for each sampled D, draw a resampled

graph (G’ from ensemble

A test: do resampled graphs look like original?




herbivore

A

plant

/

parasite
Grassland species®

*thank you: Jennifer Dunne
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MISSING LINKS

A test: can model predict missing links?




PREDICTING IS HARD

e remove k edges from GG

* how easy to guess a missing link?




PREDICTING MISSING LINKS

Given incomplete graph GG
run MCMC to equilibrium

then, over sampled D, compute average (Pr)

for links (¢,75) € G
predict links with high (p,.) values are missing

Test idea via leave-k-out cross-validation

perfect accuracy: AUC =1
no better than chance: AUC=1/2




MISSING STRUCTURE

Grassland species network

.9H - ¢ - Jaccard coeff.

.01 —&— Hierarchical structure

- = =Pure chance
- @ - Common neighbors

- v - Degree product hierar Chy
- b - Shortest paths

\. pure chance

0.4 0.6 0.8
Fraction of edges observed, k/m

simple predictors




OTHER NETWORKS

Terrorist association network

- - = Pure chance

- @ - Common neighbors
- ¢ - Jaccard coefficient

- v - Degree product

- b= Shortest paths

—e— Hierarchical structure

T. pallidum metabolic network

- - = Pure chance

- o - Common neighbors
- ¢ - Jaccard coefficient

- v - Degree product

- b - Shortest paths

—e— Hierarchical structure

0.4 0.6
Fraction of edges observed

0.6
Fraction of edges observed




SUMMARY

e Many real networks are hierarchically modular

e Hierarchies can
e model multi-scale structure
* generalize a single network
* predict missing links

* Model-based inference is very powerful

Acknowledgments:
C. Moore, M.E.J. Newman, C.H. Wiggins, and C.R. Shalizi
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MARKOV CHAIN MONTE
CARLO (MCMCQC)

Given D, choose random internal node
Choose random reconfiguration of subtrees [ergodicity]
Recompute probabilities {p, } and likelihood £

Sampling states according to their likelihood  [detailed balance]

silnin

three subtree configurations
(up to relabeling)
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1. SUMMARY STATISTICS

Air rarsporiation

degree distribution rich-club distribution

short-loop distribution betweenness function degree-degree correlations




1. SUMMARY STATISTICS

The good
e good for exploratory analysis
e often quick calculations
The bad
e throw away important information
* can make different networks appear similar
e what are right statistics to measure?
e different statistics often highly correlated

indirect measures of large-scale structure, function




2. ALGORITHMIC ANALYSIS

global modularity Q

B (==
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box covering

clique covering

network motifs




2. ALGORITHMIC ANALYSIS

The good
e good for exploratory analysis
e illustrate large-scale structure, heterogeneity
The bad
e often (NP-)hard optimizations
* can be sensitive to noise, uncertainty
* ad hoc or heuristic measures of structure, function
e algorithm = theory

e implied physics often unclear




3. STATISTICAL INFERENCE

T

hierarchical random graphs latent space models  correlation reconstruction

community mixtures information bottlenecks  network classification




3. STATISTICAL INFERENCE

The good
* model-based measures of structure
* concrete, testable predictions
* better robustness to noise, uncertainty
* well-grounded in computer science, statistics

The bad

* models must be explicit, precise

e often hard computations

e data intensive
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MIXING TIMES

MCMC mixes
relatively quickly

Equilibrium in

O(n?) steps
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HIERARCHIES

point estimate consensus hierarchy
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