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Milgram Study (1967)

A question of social connectedness

• 60 letters sent to Wichita, Kansas

• Destination: wife of divinity stud., Cambridge, Ma.

• Only 3 arrived

• Subsequent studies: mean path length ~6
Discoveries

• Surprisingly short paths; “small world” phenom.

• Shorts paths are locally discoverable

S. Milgram, “The small world problem.” Psychology Today 2 (1967) 60--67.



Watts-Strogatz Model (1998)

• Modeled existence of short paths only

• diameter log(n)

D.J. Watts and S.H. Strogatz,  “Collective dynamics of small-world networks.” Nature 393 (1998) 440-442.



Kleinberg Model (2000)

• Model of navigability/search

• Lattice + long range links

• (Manhattan) distance metric

• Local (greedy) navigation in ~                stepslog2(n)

J. Kleinberg. “The small-world phenomenon: an algorithmic perspective.” 
Proc. 32nd ACM Symposium on Theory of Computing (2000) 163--170.

d(u, v) = |u − v|



An Aside: Finite Size Effects

• Simulate Kleinberg graphs with various 

• Measure mean routing time

• Find severe finite size effects

e.g.,  for 

• Keep this in mind for later

α ∼ d

T

αTopt
(n) = 1 −

A

log2(n)

d = 1

αTopt
!= d



Simulation Results
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Convergence
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Not a new result

J. Kleinberg, “Navigation in a small world.” Nature 406 (2000) 845.

20,000 x 20,000 lattice



Observation

• Real networks often locally navigable
e.g., social network, world wide web

Idea

• Distributed changes to topology

• Greedy changes to improve local navigability

• web surfers on network of home pages

• links changed based on speed of surfing

Origins of Navigability



• Same network as Kleinberg

• Dynamic, greedy rewiring process

• Global attractor for link-length distribution

• Gives routing time

Clauset/Moore Model (2003)

u

va

b

P (!) → !
−αrewired αrewired ∼ d

T ∼ [log(n)]2



1. choose random pair               (for            )

2. choose random tolerance         on 

3. if routing time                , become frustrated

4. if frustrated, change random long-range link to have 
length 

Dynamics

[1, d(x, y)]

(x, y)

Tt

Tt

Tr ≥ Tt

d = 1



Simulation Results

Initial Conditions

All self-loops, i.e., 

Stop Criteria

When link-length distribution stabilizes

P (!) ∼ !
−∞



Rewired Link-Lengths
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Routing Times

• Measure mean routing times after stabilization

• Fast routing times 

• Recall that                       (finite size effects)

T ∼ [log(n)]αTopt

αTopt
∼ d



Routing Times
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How long until navigable? 

• Let rewiring time           be rewiring trials until

•          grows as a low-order polynomial

τ(n)

Trewired ≤ 1.01 · Topt

τ(n)

τ(n) ∼ n
1.77



Time to Navigability
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Global Attractor

Initial Condition
• Link-length distribution
• Measure                 as function of

• Rewired distribution (eventually) independent of initial 
condition

αrewired α0

P (!) ∼ !
−α0



Independence
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Analytics

• Distribution of tolerances 

• Otherwise, we don’t know much

• If             , then 
• What is                                            ? 

Tt

P (Tt) =
log n − log Tt

n − 1 − log n

α = d E[new length] = E[old length]
P (frustrated | d(u, v))



• Navigability can come from distributed behavior

• Natural/intuitive mechanism

• Process is adaptive to changes in size, etc.

• Analytics hard (full-history problems)

• Power laws emerge spontaneously - why?

• How does destination popularity effect rewired topol.

• Preprint at  cond-mat/0309415

Thoughts




