
netmap

or
the mini-Ark project

CAIDA/WIDE/CASFI, 4 April 09

WAND, 20 Mar 09

Nevil Brownlee

netmap, CAIDA/WIDE/CASFI, Apr 09 – p.1/16

Background: Internet in Auckland

U Auckland is a big content provider

Internet in Auckland used to have a simple topology

All the ISPs connected to APE, Auckland Peering Exchange

Telecom NZ and TelstraClear left APE

Now some larger ISPs connect to both TNZ and TCL

It’s hard to determine where congestion is occuring

We’d like to have a more accurate topology

and a near-realtime traffic weather map!

netmap, CAIDA/WIDE/CASFI, Apr 09 – p.2/16

Backgound (2): U Auckland Campus Network

The campus network is highly resilient

Many services are concentrated in our central Data Centre

Users often complain of ‘poor network performance’

The topology is resilient (good) but poorly documented (bad)

Again, would like an accurate topology and weather map

netmap, CAIDA/WIDE/CASFI, Apr 09 – p.3/16

Solution: Distributed Monitoring

Develop central server + ‘user-machine’ clients

Clients to perform measurements between self and other
clients

Also (possibly) a set of fixed hosts (e.g. popular web sites)

Use netmap measurement tools

netmap, CAIDA/WIDE/CASFI, Apr 09 – p.4/16

Other Projects

Scriptroute
Uses measurement servers at known sites
Long-term server support problems

Users can run Ruby measurement scripts on measurement
servers
Co-ordinated via central web site

Dimes
Uses many clients on ‘user’ machines

Widespread view of Internet from user point of view

Low maintenance (doesn’t matter if we loose clients)

netmap, CAIDA/WIDE/CASFI, Apr 09 – p.5/16

Other Projects (2)

Nettest
Clients on user machines
Passive measurement only

monitors flows and sends data to central server

Clients in C, specific to OS (XP, Vista, OS X, Linux)

Allows for automatic upgrades of client software

Ark
CAIDA project, developed by Young Hyun

Co-ordination system for CAIDA’s topology measurement
infrastructure
Uses scamper to make IPv4 and IPv6 traceroutes

Written in Ruby, uses tuples for shared data

Uses dedicated measurement hosts (not ‘user’ clients)

netmap, CAIDA/WIDE/CASFI, Apr 09 – p.6/16

Implementation Strategy

Write everything in Ruby!

ruby + mysql for server

rails for database/web pages

fxruby for gui (if/when needed)

rubyscript2exe can create clients for all the OSes

Can determine OS in Ruby, should allow single script for all OSes

What measurements can we make?
General (scriptroute-style) – too hard

Link capacity, e.g. using Pathrate – also too hard

Topology, i.e. links and (maybe) one-way delays – traceroute

netmap, CAIDA/WIDE/CASFI, Apr 09 – p.7/16

Implementation Strategy (2)

What about Firewalls?
measurement between clients needs e2e addressing

Firewalls block that

Skype and friends have cunning schemes to get through
firewalls

we don’t want to go there

traceroute is single-ended

trace as near to target IP address as we can

decided to just use traceroute initially

netmap, CAIDA/WIDE/CASFI, Apr 09 – p.8/16

Implementation Strategy (3)

Could we use scamper?
Good traceroute capability, good Ruby interface

Need to install and run scamper on client hosts

Decided to just use system traceroute (already installed)

Make server do most of the work
keep clients minimal

simple TLV-over-TCP protocol

How to Visualize Topologies?

use GraphViz
well documented
ruby module

need to map IP addresses to ISP

Use uspmon IP address data (/24 prefixes)

Look up ASNs for prefixes using
http://www.team-cymru.org/Services/ip-to-asn.html

netmap, CAIDA/WIDE/CASFI, Apr 09 – p.9/16

Summer 2008-9 Project Goals

Implement server and client in Ruby

Use system traceroute as only measurement tool

make mysql database for Traceroutes and Hops only

Deploy several clients around U Auckland campus network

Collect (lots of) traceroute data

Use the traceroute data to draw topology diagrams (if time)

netmap, CAIDA/WIDE/CASFI, Apr 09 – p.10/16

System Structure

OB starts thread for each client
(better to use Ruby EventMachine)

mysql tables

ClientInfo, Hops, TraceRoutes

Server threads
handle client login

tell client IP addresses to traceroute to
receive data and store it in database

Client
login to server

ask server for target IP addresses

traceroute to them, send data to client

sleep for ‘measurement interval’

loop with next set of targets

netmap, CAIDA/WIDE/CASFI, Apr 09 – p.11/16

Topology from traceroute data?

130.216.252.5

130.216.252.62

130.216.252.45

130.216.252.117

130.216.252.57

192.168.254.17 192.168.254.73

130.216.252.50

192.168.196.1

130.216.38.130

130.216.38.254traceroute measures rtt for
ttl = 1, 2, ...

Default is three tries for each ttl

Assume that each column of
output is a route

That’s fine if there’s only one path

But U Auckland network has
(lots of) resilience . . .

Paths from Nevil’s desktop Mac to
dnsparse VM (in Data Centre) ⇒

netmap, CAIDA/WIDE/CASFI, Apr 09 – p.12/16

‘Best guess’ routes from traceroute?

130.216.252.5 (16)

130.216.252.62 (16)

8

130.216.252.45 (24)

130.216.252.117 (24)

12

130.216.252.57 (16)

8

192.168.254.17 (18)

18

192.168.254.73 (22)

11

130.216.252.50 (24)

12

192.168.196.1 (40)

12

130.216.38.130 (20)

130.216.38.254 (40)

20

8

* (130)

20

9 11

10

50

Would n times 1 try
per hop be better?

Seems to be!

Anyone got any
better ideas?

netmap, CAIDA/WIDE/CASFI, Apr 09 – p.13/16

Summer Project Summary

Proof of concept achieved by two (end of 2nd-year)
students in 10 weeks

Next steps:

improve server/client code

get windows and OS X clients working

collect lost more data at U Auckland

explore ways to visualise the data well

make pretty web pages

try running clients in Auckland Internet
. . .

netmap, CAIDA/WIDE/CASFI, Apr 09 – p.14/16

WAND feedback

Questions about ‘n × 1’ traceroute strategy

scamper tries really hard to map links

that includes keeping porobe packet fields same for all TTLs

routers/switches along path should use same hash from
packets

Trying scamper at Auckland on same path as before
produced single paths

so did traceroute, same path, even with ‘5 × n’ strategy

ditto scamper using Paris traceroute,
scamper -c ’trace -P icmp-paris’ -i 130.216.190.25

But, it was a zig-zag path on previous diagrams!

Clearly, paths can and do change over time in the
U Auckland network

Matthew has a Windows scamper in development

netmap, CAIDA/WIDE/CASFI, Apr 09 – p.15/16

And now . . .

David McDonald, Postgrad Dissertation student, is working
on netmap

New server and client
uses SOAP to exchange data

will look at paths between clients (SOAP uses http transport)

will use scamper once Windows version is available

about to start collecting traceroute data in U Auckland network

Concentrate on visualising topology
David has a strong background in viualisation

he’s doing a lot of background reading

It’s now a work in progress !

netmap, CAIDA/WIDE/CASFI, Apr 09 – p.16/16

	Background: Internet in Auckland
	Backgound (2): U Auckland Campus Network
	Solution: Distributed Monitoring
	Other Projects
	Other Projects (2)
	Implementation Strategy
	Implementation Strategy (2)
	Implementation Strategy (3)
	Summer 2008-9 Project Goals
	System Structure
	Topology from traceroute data?
	`Best guess' routes from traceroute?
	Summer Project Summary
	WAND feedback
	And now ldots

