Automated Application Signature Generation Using LASER and Cosine Similarity

Byungchul Park, Jae Yoon Jung, John Strassner*, and James Won-ki Hong*

{fates, dejavu94, johns, jwkhong}@postech.ac.kr Dept. of Computer Science and Engineering, POSTECH, Korea *Division of IT Convergence Engineering, POSTECH, Korea April 24, 2010

The 3rd CAIDA-WIDE-CASFI Joint Measurement Workshop

Contents

- Introduction
- Traffic classification based on flow similarity
 - Research goal
 - Overview of proposed methodology
 - Vector space modeling
 - Measuring packet/flow similarity
 - Evaluation Result
- What is next step?
 - Fine-grained traffic classification
 - Automated application signature generation using LASER and flow similarity
 - Conclusion

Introduction

- Internet traffic classification gains continuous attentions
- CAIDA have created a structured taxonomy of traffic classification papers and their data set (68 papers, 2009)
- Various methodologies for traffic classification

	Accuracy	Strength	Weakness
Port-based	Low	Low computational cost	Low accuracy
Signature- based	High	Most accurate method	Exhaustive signature generation
ML-based	High	Can handle encrypted traffic	High complexity Affected by network condition

- How can we guaranty the classification accuracy with low complexity?
 - Develop a methodology to generate application signature automatically
 - Develop another methodology using packet payload contents

Traffic classification based on flow similarity

- Research goal: a new traffic classification methodology
 - Analyzing payload contents
 - High accuracy and low complexity
- Document classification → Traffic classification
 - Document classification in natural language processing
 - Document = Packet (or traffic)
- Apply a variation of document classification approach to traffic classification
 - Low processing overhead
 - Comparable accuracy to signature-based classification
 - No more exhaustive signature extraction tasks
 - Simple numerical representation of similarity between network traffic

Vector Space Modeling (1/2)

- An algebraic model representing text document as vectors
- Widely used in document classification research
- Payload vector conversion
 - Document classification in natural language processing
 - Document ≒ Packet (or traffic)
 - Document classification utilize occurrence
- Definition of word in payload
 - Payload data within an i-bytes sliding window
 - |Word set| = 2^(8*sliding window size)
- Definition of payload vector
 - A term-frequency vector in NLP
 - **Payload Vector** = $[\mathbf{w}_1 \ \mathbf{w}_2 \ \dots \ \mathbf{w}_n]^T$

Vector Space Modeling (2/2)

Word Word Word

HEX **13 42 69 74** 54 6f 72 72 65 6e 74 20 70 72 6f 74 6f 63 6f 6c **00 00 00 00 00** 10 00 05 fb 95 c0 23 94 92 5e 38 fd 60 57 a1 43 8a e6 96 2b c9 7a c7 4d 36 2d 31 2d 32 2d 2d 6e 34 5f f2 60 1f 2c f7 b1 **01 17 e1**

ASCII .BitTorrent prot ocol.....# ..^8.`W.C...+.Z. M6-1-2--n4_.`.,. Payload Vector p[0x0000] = 4;p[0x1342] = 1;p[0x4269] = 1;. . . p[0x6974] = 1;. . . p[0x0117] = 1;p[0x17e1] = 1;. . .

- The word size is 2 and the word set size is 2¹⁶
- Larger word size → dimension of payload vector is increased exponentially

Measuring Packet Similarity

- Cosine Similarity
 - The most common similarity metric in NLP

Similarity
$$(p_1, p_2) = \frac{V(p_1) \cdot V(p_2)}{|V(p_1)| |V(p_2)|}$$

0: Independent 1: Exactly same

- Packet Comparison
 - Packet similarity = Cosine Similarity (payload_vector₁, payload_vector₂)
 - 0: Payloads are different
 - 1: Payloads are similar

Measuring Flow Similarity

- Payload Flow Matrix (PFM)
 - k payload vectors in a flow
 - Represent a traffic flow

 $PFM = [p_1 p_2 \dots p_k]^T$

where p_i is payload

Collected PFM

- Information about target flows
- Alternative signatures
- Accumulated empirically to enhance signature word

Collected PFMs = a * new PFM + (1 - a) * Collected PFMs

- Packets are compared sequentially with only the corresponding packet in the other flow
- Flow similarity score = \sum_{q} packet similarity

Measuring Packet Similarity

- Dataset: traffic trace on one of two Internet junction at POSTECH
- Traffic Measurement Agent (TMA)
 - Monitoring the network interface of the host
 - Recording log data (5-tuple flow info., process name, packet count, etc)
 - Generating ground-truth to validate traffic classification results

Classification Results

HTTP packet contents	YouTube signal packet contents	
GET / HTTP/1.1	GET/videoplayback?sparams=id%2Cexprie %2Cip%2ipbits%	
NT 5.1; en-US)	HTTP/1.1 User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; ep. US)	
	····	
Connection: Keep-Alive	Connection: Keep-Alive	

Proposed Method vs. LASER

Accuracy comparison with our earlier work (LASER, automated signature generation system)

	Proposed Method	LASER
Overall Accuracy	96.01%	97.93%

Summary

- New traffic classification approach
 - Converting payloads into vector representations
 - Document classification approach to traffic classification
 - Accuracy analysis on representative target applications in the real traffic
- Contribution
 - No more exhaustive search for payload signatures
 - Achieving simplicity simple numerical representation of similarity in traffic classification
- Strength
 - Accuracy of classification result was almost same with signature-based classification result (overall accuracy: 96%)
 - Similar to unsupervised ML (clustering) with low complexity
- Weakness
 - Manual parameter adjustment
 - Scalability problem (efficient for small number of target application)
 - Vector and matrix conversion are required

What is Next Step?

- Fine-grained traffic classification
 - Current traffic classification schemes are only able to discriminate broad application classes or application names

- One application generates different types of traffic (e.g., P2P: searching, downloading, advertising, messenger, etc)
- Fine-grained traffic classification can be used for extracting information about application usage
- Need a new methodology to classify certain application's traffic according to usage of the traffic

Proposing New Approach

- LASER + Flow similarity
 - Stage 1: Preprocess network traffic using 'flow similarity' to classify usage types of traffic
 - Stage 2: Extract application signatures from flows which are grouped by 'flow similarity'
- Types of traffic generated by a network application (especially P2P app.) are limited
- Flow similarity might efficient for classifying types of network flow (without scalability problem)
- Combining two methods can enable to generate application signature fully automated manner

Conclusion

- Traffic classification using flow similarity
 - Converting payloads into vector representations
 - Utilizing document classification approach to traffic classification
 - Provide soft-classification that is represented as a numerical value ranges from 0 to 1
 - Provide about 95 % classification result regardless of asymmetric routing environment
 - Linear time complexity
- Fine-grained traffic classification
 - Goal: Develop a methodology to classify certain application's traffic according to usages of the traffic
 - Fine-grained traffic classification can be used for extracting information about application usage
 - Top n applications \rightarrow Top n operations
 - Approach: combining LASER and document classification methodologies

