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• Internet traffic classification gains continuous attentions

• CAIDA have created a structured taxonomy of traffic classification 
papers and their data set (68 papers, 2009)

• Various methodologies for traffic classification

• How can we guaranty the classification accuracy with low 
complexity?
– Develop a methodology to generate application signature automatically
– Develop another methodology using packet payload contents

Introduction

Accuracy Strength Weakness

Port-based Low Low computational cost Low accuracy
Signature-
based High Most accurate method Exhaustive signature 

generation

ML-based High Can handle encrypted 
traffic

High complexity
Affected by network condition
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• Research goal: a new traffic classification methodology
– Analyzing payload contents
– High accuracy and low complexity

• Document classification  Traffic classification
– Document classification in natural language processing
– Document ≒ Packet (or traffic)

• Apply a variation of document classification approach to traffic 
classification

– Low processing overhead
– Comparable accuracy to signature-based classification
– No more exhaustive signature extraction tasks
– Simple numerical representation of similarity between network traffic

Traffic classification 
based on flow similarity
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Overview of Proposed Methodology
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• An algebraic model representing text document as vectors
• Widely used in document classification research

• Payload vector conversion
– Document classification in natural language processing
– Document ≒ Packet (or traffic)
– Document classification utilize occurrence 

• Definition of word in payload
– Payload data within an i-bytes sliding window 
– |Word set| = 2(8*sliding window size) 

• Definition of payload vector
– A term-frequency vector in NLP
– Payload Vector = [w1 w2 … wn]T

Vector Space Modeling (1/2)
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Vector Space Modeling (2/2)
Word Word Word

• The word size is 2 and the word set size is 216

• Larger word size   dimension of payload vector is increased 
exponentially
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• Cosine Similarity
– The most common similarity metric in NLP

   0: Independent
   1: Exactly same

• Packet Comparison
– Packet similarity = Cosine Similarity (payload_vector1, payload_vector2)

     0: Payloads are different
     1: Payloads are similar

Measuring Packet Similarity

Similarity (p1, p2)  =
V(p1) · V(p2)

|V(p1) | |V(p2)|
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• Payload Flow Matrix (PFM)
– k payload vectors in a flow
– Represent a traffic flow

  where pi is payload 

Measuring Flow Similarity

PFM = [p1 p2 … pk]T

• Collected PFM
– Information about target flows
– Alternative signatures
– Accumulated empirically to 

enhance signature word

Collected PFMs = 
a * new PFM + (1 - a) * Collected PFMs

PFM 1
PFM 2
PFM 3

PFM m

…

• Packets are compared sequentially with only the corresponding 
packet in the other flow

• Flow similarity score = ∑ packet similarity
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• Dataset: traffic trace on one of two Internet junction at POSTECH
• Traffic Measurement Agent (TMA)

– Monitoring the network interface of the host
– Recording log data (5-tuple flow info., process name, packet count, etc)
– Generating ground-truth to validate traffic classification results

Measuring Packet Similarity
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Classification Results

Application Classified
Traffic (kB)

False
Negative 

(kB)

False
Positive 

(kB)
BitTorrent 202,018 3,361 0
LimeWire 87,678 2,951 0
FileGuri 95,804 9,691 0
YouTube 16,061 0 3,775
TMA Log

Traffic 421,339 kB421,339 kB421,339 kB
40

60

80

100

BitTorrent LimeWire Fileguri Youtube

Classification Accuracy (%)

HTTP packet contents YouTube signal packet contents
GET / HTTP/1.1
User-Agent: Mozilla/5.0 (Windows; U; Windows 
NT 5.1; en-US)
…
…
Connection: Keep-Alive

GET/videoplayback?sparams=id%2Cexprie
%2Cip%2ipbits% … 
HTTP/1.1 User-Agent: Mozilla/5.0 (Windows; U; 
Windows NT 5.1; en-US)
…
Connection: Keep-Alive
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• Accuracy comparison with our earlier work (LASER, automated 
signature generation system)

Proposed Method vs. LASER

Proposed Method LASER

Overall 
Accuracy 96.01% 97.93%

0
3.75
7.50

11.25
15.00

BitTorrent LimeWire Fileguri

Proposed Method
LASER
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• New traffic classification approach
– Converting payloads into vector representations
– Document classification approach to traffic classification
– Accuracy analysis on representative target applications in the real traffic

• Contribution
– No more exhaustive search for payload signatures
– Achieving simplicity – simple numerical representation of similarity in traffic classification

• Strength
– Accuracy of classification result was almost same with signature-based classification 

result (overall accuracy: 96%)
– Similar to unsupervised ML (clustering) with low complexity

• Weakness
– Manual parameter adjustment
– Scalability problem (efficient for small number of target application)
– Vector and matrix conversion are required

Summary
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• Fine-grained traffic classification
– Current traffic classification schemes are only able to discriminate broad 

application classes or application names

– One application generates different types of traffic (e.g., P2P: searching, 
downloading, advertising, messenger, etc)

– Fine-grained traffic classification can be used for extracting information about 
application usage

• Need a new methodology to classify certain application’s traffic 
according to usage of the traffic

What is Next Step?

Usage #1

Usage #2

Usage #3

Traffic Traffic
Classification

System

Application #1

Application #2

Application #3

Current Scheme
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• LASER + Flow similarity
– Stage 1: Preprocess network traffic using ‘flow similarity’ to classify 

usage types of traffic
– Stage 2: Extract application signatures from flows which are grouped by 

‘flow similarity’

• Types of traffic generated by a network application (especially 
P2P app.) are limited

• Flow similarity might efficient for classifying types of network 
flow (without scalability problem)

• Combining two methods can enable to generate application 
signature fully automated manner

Proposing New Approach
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• Traffic classification using flow similarity
– Converting payloads into vector representations
– Utilizing document classification approach to traffic classification
– Provide soft-classification that is represented as a numerical value 

ranges from 0 to 1
– Provide about 95 % classification result regardless of asymmetric 

routing environment
– Linear time complexity

• Fine-grained traffic classification
– Goal: Develop a methodology to classify certain application’s traffic 

according to usages of the traffic
– Fine-grained traffic classification can be used for extracting information 

about application usage
• Top n applications  Top n operations

– Approach: combining LASER and document classification 
methodologies

Conclusion
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