
Measurement Research 
to the Web Calamity's 

Rescue
Gregory BLANC

Internet Engineering Laboratory
Nara Institute of Science Technology

WIDE member

3rd CAIDA-WIDE-CASFI Measurement Workshop 
April 24-25, 2010, Osaka

Sunday, April 25, 2010



What measurement 
does?

• CAIDA: malicious activity analysis, 
traffic classification, data sharing

• CASFI: performance measurement, 
traffic analysis, data sharing

• WIDE-mawi: DNS behavior analysis, 
traffic measurement, data sharing

• overall, deploying probes at the 
network layer and measuring traffic 
characteristics

2

Sunday, April 25, 2010



What measurement 
does? (from the leaders)

• Kenjiro CHO ~  “AJAX generates a lot 
of traffic”

• Brad HUFFAKER ~ “HTTP is king”

• Sue MOON ~ “The Web admin left”

3

Sunday, April 25, 2010



What measurement can 
do?

• distinguishing application won’t help

• we need to look deeper in the 
application layer 

• draw statistics of what is actually 
flowing

• collect samples of what interests us

4

Sunday, April 25, 2010



Common Issues in Web 
Security Research

• we often encounter issues when 
evaluating proposals (systems):
• lack of datasets: nothing to play with
• homogeneous datasets: too much of 

the same thing
• outdated datasets: remember the 

KDD Cup 1999?
• unbalanced datasets: might not be 

representing the reality

5

Sunday, April 25, 2010



Existing methods to collect 
JS samples (1): crawling

• merits

• automated

• can collect loads of 
data

• demerits

• do not understand 
AJAX

• can not mimic 
accurately the user

• target site should 
be wisely chosen

• JS may represent a 
small percentage

• solution: targeting 
blacklisted websites

• user contribution

• Example:

• crawler.archive.org

6

Sunday, April 25, 2010



Existing methods to collect JS 
samples (2): analysis website

• merits

• only malicious JS

• often deobfuscated

• available online

• demerits

• size depends on user 
contribution

• dataset is not 
enough varied

• data is not always 
available

• solution: to encourage 
sharing 

• but it will be limited 
to what users would 
want to contribute

• Example

• wepawet.cs.ucsb.edu

• jsunpack.jeek.org

7

Sunday, April 25, 2010



No solution in the wild (1)
• we do not capture malicious JS 

because it is volatile in nature:
• volatileness
• obfuscation
• transience
• duplication
• redirection
• application layer
• silent bidirectional communication

8

Sunday, April 25, 2010



No solution in the wild (2)

• no efficient crawlers
• no attractive sharing platforms
• small user contribution
• new ways to get samples in the wild:

• network probes with deep packet 
inspection -> overhead

• browser monitoring -> privacy
• logs

9

Sunday, April 25, 2010



JS measurement

• what to measure? is it measurable?

• degree of obfuscation of benign Web 
2.0 traffic: obfuscation does not 
indicate maliciousness

• spread of JS malware: Samy was 
fast but noisy

• JS malware code collection: overall 
lack of reliable datasets

10

Sunday, April 25, 2010



Web 2.0

• not only a buzzword

•  paradigm shift:

• shift in the development

• shift in the usage

11

Sunday, April 25, 2010



Development Shift

• Rich Internet Applications (desktop)

• Asynchronous Communication

• Cross-domain Interaction

• Web Services

12

Sunday, April 25, 2010



Usage Shift

• Software Consumption

• Collaboration/Participation

• Content Sharing

• Syndication/Aggregation

• Social Networking

13

Sunday, April 25, 2010



Browser Model Shift

• To cope with the Web 2.0 offer, the 
browser model has also changed:

• plugins (Flash)

• APIs (Ajax, custom, etc.)

• interconnection (ActiveX, JavaVM)

14

Sunday, April 25, 2010



15

Sunday, April 25, 2010



User is the new victim

• server side: too many websites with too many 
inputs to validate or control

• client side: the user is left defenseless even against 
deemed benign popular sites

Attackers prefer to concentrate on the most 
vulnerable, the end-user: phishing, drive-by 
attacks,etc.

This new browser model provides a better 
user experience but provides the attacker 

with a wider attack space

16

Sunday, April 25, 2010



JS malware (1)

• JS is a dynamic prototype-oriented 
event-drivent scripting language
• a good tool to program automated 

elaborated script that can do 
massive harm

• JS malwre: observed and defined by 
some security researchers (Brian 
Hoffman, Jeremiah Grossman, 
Martin Johns, etc.)

17

Sunday, April 25, 2010



JS malware (2)

• propagates like conventional malware

• wide category regrouping JS-based 
malicious code 

• PoC: XSS tunnel/proxy/botnet

• in-the-wild examples: BeEF, 
BrowserRider, XSS-proxy, Samy 
worm, Yamanner

18

Sunday, April 25, 2010



Strengths of JS Malware
• 1) stealth: property of going 

unnoticed by the user and the server

• use of the XHR object

• 2) polymorphism: ability of changing 
its form dynamically to evade 
signature

• use of prototype hijacking
• 3) obfuscation

19

Sunday, April 25, 2010



JavaScript Analysis

• dynamic execution [Moshchuk’07]
• static/dynamic tainting [Vogt’07]
• control flow graph [Guha’09]
• semantics [Hou’08]
• machine-learning based [Choi’09, 

Hou’10, Likarish’09] 

20

Sunday, April 25, 2010



JavaScript 
Deobfuscation

• manual deobfuscation
• semi-automated (Malzilla)
• anti-analysis tricks: 

• recursive obfuscation
• anti-crawling traps
• argument.callee

21

Sunday, April 25, 2010



Conclusion

• Our research area suffers a great lack 
of reliable and representative data

• We have the methods and tools to 
carry out analysis but no data

• Measurement research has made 
progress not only on collection but 
also on efficiency

• It is time to cooperate!

22

Sunday, April 25, 2010



Overture

• JavaScript is not the only matter of 
concern

• VBScript, ActionScript (Flash)

• new media of propagation (SNS)

• distribution websites structure

23

Sunday, April 25, 2010



Questions / Discussion

• Thank you for your attention

• Let’s start a cooperation: 
gregory@is.naist.jp

24

Sunday, April 25, 2010

mailto:gregory@is.naist.jp
mailto:gregory@is.naist.jp


References

• [Moshchuk’07]: SpyProxy: Execution-based Detection of Malicious Web 
Content, USENIX Security’07

• [Vogt’07]: Cross-Site Scripting Prevention with Dynamic Data Tainting 
and Static Analysis, NDSS’07

• [Hou’08]: Malicious Webpage Detection by Semantics-Aware Reasoning, 
ISDA’08

• [Choi’09]: Automatic Detection for JavaScript Attacks in Web Pages 
through String Pattern Analysis, FGIT’09

• [Guha’09]: Using Static Analysis for Ajax Intrusion Detection, WWW’09

• [Likarish’09]: Malicious Javascript Detection Using Classification 
Techniques, MALWARE’09

• [Hou’10]: Malicious Web Content Detection by Machine Learning, Expert 
Systems with Applications #37

25

Sunday, April 25, 2010


