Degree correlations and topology generators

Dmitri Krioukov

dima@caida.org

Priya Mahadevan and Bradley Huffaker

5th CAIDA-WIDE Workshop

Outline

.

•

•

0K 1K 2K 3K

DK

What's the problem?

■ Veracious topology generators. Why?

- New *routing* and other protocol design, development, and testing
 - Scalability
 - For example: new routing might offer X-time smaller routing tables for today but scale Y-time worse, with Y >> X
- Network robustness, resilience under attack
- Traffic engineering, capacity planning, network management
- In general: "what if"

Veracious topology generators

Reproducing closely as *many* topology characteristics as possible. Why "many"?

- Better stay on the safe side: you reproduced characteristic X OK, but what if characteristic Y turns out to be also important later on and you fail to capture it?
- Standard storyline in topology papers: all those before us could reproduce X, but we found they couldn't reproduce Y. Look, we can do Y!
- Emphasis on practically *important* characteristics

Important topology characteristics

- Performance parameters of most modern routing algorithms depend solely on distance distribution
- Prevalence of short distances makes routing hard (one of the fundamental causes of BGP scalability concerns (86% of AS pairs are at distance 3 or 4 AS hops))
- **#** Betweenness distribution
- **#** Spectrum

How to reproduce?

♯ Brute force doesn't work

- There is no way to produce graphs with a given form of any of important characteristics
- Even more so for combinations of those
- **#** More intelligent approach
 - What are the inter-dependencies between characteristics?
 - Can we, by reproducing most basic, simple, but not necessarily practically relevant characteristics, also reproduce (capture) all other characteristics, including practically important?
 - Is there the one(s) defining all other?
- **#** We answer positively to these questions

Maximum entropy constructions

 Reproduce characteristic X (0K, 1K, etc.) but make sure that the graph is *maximally random* in all other respects
 Direct analogy with physics (maximum entropy principle)

Most basic characteristics: Connectivity

Tag	Name	Correlations of degrees of nodes at distance:	Notation
0K	Average node degree	None	< <i>k</i> >
1K	Node degree distribution	0	P(k)
2K	Joint node degree distribution or edge degree distribution	1	$P(k_1,k_2)$
3K	Joint edge degree distribution	2	$P(k_1,k_2,k_3)$
•••	•••	•••	
DK	Full degree distribution	D = maximum distance (diameter)	$P(k_1, k_2,, k_D)$

Tells you

OK

• Average node degree (connectivity) in the graph $\langle k \rangle = 2m / n$

Maximum entropy construction (*0K*-random)

- Connect every pair of nodes with probability
 p = <k> / n
- Classical Erdös-Rényi random graphs
- $\blacksquare P(k) \sim e^{-<k>} < k > k / k!$

1K**#** Tells you Probability that a randomly selected node is of degree kP(k) = n(k) / nConnectivity in 0-hop neighborhood of a node **#** Defines

 $\blacksquare <k> = \Sigma_k \ k \ P(k)$

1K

Maximum entropy construction (*1K*-random) 1. Assign *n* numbers *q*'s (expected degrees) distributed according to *P(k)* to all the nodes; 2. Connect pairs of nodes of expected degrees *q*₁ and *q*₂ with probability *p(q*₁,*q*₂) = *q*₁*q*₂/(*n*<*q*>)

- More care to reproduce P(k) exactly
- Power-law random graph (PLRG) generator
- Inet generator

- Probability that a randomly selected edge connects nodes of degrees k_1 and k_2 $P(k_1,k_2) = m(k_1,k_2) / m$
 - Probability that a randomly selected node of degree k₁ is connected to a node of degree k₂ $P(k_2|k_1) = \langle k \rangle P(k_1,k_2) / (k_1 P(k_1))$
 - Connectivity in 1-hop neighborhood of a node

Defines

•
$$= [\Sigma_{k_1,k_2} P(k_1,k_2)/k_1]^{-1}$$

• $P(k) = \Sigma_{k_2} P(k,k_2)/k_2$

2*K*

Maximum entropy construction (2K-random)

- 1. Assign *n* numbers *q*'s (expected degrees) distributed according to *P(k)* to all the nodes;
 2. Connect pairs of nodes of expected degrees *q*₁ and *q*₂ with probability
 - $p(q_1, q_2) = (\langle q \rangle / n) P(q_1, q_2) / (P(q_1)P(q_2))$
- Much more care to reproduce $P(k_1,k_2)$ exactly
- Have not been studied in the networking community

Tells you

3K

- Probability that a randomly selected pair of edges connect nodes of degrees k₁, k₂, and k₃
- Probability that a randomly selected triplet of nodes are of degrees k₁, k₂, and k₃
- Connectivity in 2-hop neighborhood of a node

Defines

- <k>
- P(k)
- $\bullet P(k_1,k_2)$

Maximum entropy construction (*3K*-random)
Unknown

0K, 1K, 2K, 3K, ... What's going on here?

\blacksquare As *d* increases in *dK*, we get:

- More information about local structure of the topology
- More accurate description of node neighborhood
- Description of wider neighborhoods
- - Connection between spectral theory of graphs and Riemannian manifolds
- Conjecture: DK-random versions of a graph are all isomorphic to the original graph ⇔ DK contains full information about the graph

DK?

Do we need to go all the way through to *DK*, or can we stop before at $d \leq D$? **#** Known fact #1 • OK works bad **#** Known fact #2 IK works much better, but far from perfect in many respects **\ddagger** Let's try 2K!

What we did

 Understood and formalized all this stuff
 Devised an algorithm to produce 2Krandom graphs with exactly the same 2K distribution

Checked its accuracy on Internet AS-level topologies extracted from different data sources (skitter, BGP, WHOIS)

All characteristics that we care about exhibited perfect match

Example: distance in BGP

Example: distance in skitter

What did not work

#Clustering

- Expected to be captured by 3K
- **#**Router-level
 - Expected to be captured by *dK*, where *d* is a characteristic distance between high-degree nodes

Main contribution

.

.

.

0K 1K 2K 3K

DK

Future work

Clustering in *3K*-random graphs
Given a class of graphs, find *d* such that *dK*-random graphs capture all you need
Generalize maximum entropy construction algorithm for *dK*-random graphs with any *d*

More information

 "Comparative Analysis of the Internet AS-Level Topologies Extracted from Different Data Sources" <u>http://www.caida.org/~dima/pub/as-topo-comparisons.pdf</u>
 2-3 more papers upcoming