Inferring and Debugging Path MTU Discovery Failures

Matthew Luckie (U. Waikato) Kenjiro Cho (IIJ/WIDE) Bill Owens (NYSERNet)

The Problem

- It is desirable to send data in the fewest number of packets possible
 - Path MTU Discovery (PMTUD)
 - iterative process to determine the largest packet size (MTU) supported to a destination
 - uses feedback from ICMP Fragmentation Required / Packet Too Big (PTB) messages
- ICMP packets are not first class citizens
- PMTUD relies on these messages to work
 - Unreliable at best
 - New PMTUD method from IETF on the way

2

*

The Reverse-Path Problem

- A. Medina, M. Allman, S. Floyd. (2005) Measuring the Evolution of Transport Protocols in the Internet
- 17% of 81776 targets failed at PMTUD
 - 35% of 500 'popular' websites failed
 - Did not find any which tried smaller packets
 Assumed middle-boxes filtering ICMP
- 41% of targets did PMTUD successfully
- 30% did not attempt PMTUD

Contribution of this Work

- A forward-path PMTUD debugging tool
 - infers the hop where large packets are discarded without the source receiving a PTB message
 - largest packet that can be forwarded through
 - uses a traceroute-like method
- A look at the problems we found when measuring targets on networks which peer with the jumbo-capable Internet2

Debugging Technique: Stage 1 of 2

- Begin with a traceroute using small packets
 - Infer the forward path
 - So we can later distinguish between all packets being silently discarded and just the large ones:
 - Determine which hops will send ICMP feedback (Time Exceeded) to small packets
 - Ensure that packets can actually reach a destination

Debugging Technique: Stage 2 of 2

- Determine the Path-MTU
 - start with the outgoing interface's MTU
 - for each PTB message, reduce the working
 Path-MTU value until we reach the destination
 - we do an MTU search if
 - large packets are silently discarded
 - if we get a PTB message with a next-hop MTU of zero or larger than the probe we sent
 - we do a TTL search to infer the hop that we don't receive a PTB message from

7

The MTU Search

- Define
 - lower bound: largest packet to get a reply
 - upper bound: smallest packet to not get a reply
- In practice, a binary search is not suited
 - MTU values tend to cluster around fairly limited numbers of media MTUs
 - Each probe that is silently discarded incurs two fivesecond timeouts (by default)
 - Cheaper to send a packet that gets ICMP feedback than one that does not
 - Use a table of MTU values to guide the search
- We use a number of heuristics to guide the search, see the paper for complete coverage

*

Methodology

- Two IPv4 hosts with 9000-byte MTU Interfaces
 - connected to networks that peer with Internet2
 - east.nysernet.org
 - nms1-chin.abilene.ucaid.edu
- 147 NLANR AMP targets
 - all with 1500-byte MTU interfaces
 - vast majority are hosted on networks that peer with I2
- April 28th 2005, 21:50 EDT

Results

	NYSERNet	nms1-chin	Intersection	Total
Target Count:	147	147	147	-
Reachable:	136 (93%)	134 (91%)	134	-
Failures:	41 (30%)	40 (30%)	25	-
No ICMP Messages:	6 (6)	5 (5)	4 (4)	7 unique
No PTB Messages:	26 (17)	27 (18)	13 (13)	22 unique
Incorrect PTB:	2 (2)	2 (2)	2 (2)	2 unique
Target MTU Mismatch:	7 (7)	6 (6)	6 (6)	7 unique

The number on the left is the number of AMP targets on a path with this failure mode.

The number in brackets is the number of unique failure points.

Results: No ICMP Messages

- 7 failures (6 x 1500, 1 x 1536)
- Two were due to ingress filters
 - one originated ICMP with 127.0.0.1
 - another originated ICMP with RFC 1918
- Another due to an 'Internet Free Zone'
- Another due to routing issue that allowed end-toend connectivity, but routers in the forward path had no route back to our source.

Results: No PTB Messages

- 22 hops sent TTL Expired, but no PTB messages
 16 x 1500
 - (4 x 4472, 2 x 4540, 1 x 4470, 1 x 2002)
- Some repetition in source of the problem, 20 distinct problem locations
 - Obtained technical diagnosis for seven
 - Two were upgraded before diagnosis could be obtained
- Two main causes:
 - no ip unreachables (does not suppress TTL Expired)
 - MTU Mismatches

Incorrect PTB Messages

- Two hops from one location sent a PTB message with an incorrect next-hop MTU
 - We sent 9000 byte probes
 - It said Packet Too Big: send 4586 byte packets
 - But the path to the next-hop could only carry packets up to 4472 bytes in size
- an MTU mismatch

Target MTU Mismatches

- We found 7 AMP machines were plugged into a subnet with a router which forwarded packets larger than 1500 bytes
 - An MTU mismatch with the router, as these machines (strictly speaking) can't receive packets larger than 1500 bytes.
 - Two did: one managed 1506 bytes, another managed 2016 bytes.

An Anecdote

- A router in a commercial ISP in NYC sends PTB messages with a next-hop MTU of 4470 bytes
 - For all packets larger than 4458 bytes!
 - That's a 12 byte discrepancy
 - Could be related to 3 4-byte MPLS labels being appended.
 - Could be mis-configuration
 - Could be a bug in the router
- would really like to know why

Acknowledgements

- Matt Zekauskas (Internet2) collected nms1-chin
- WIDE + CAIDA funded development of scamper
- NLANR/MNA is funded by NSF ANI-0129677

http://www.wand.net.nz/scamper/

MTU Mismatch Example

- Router R1 thinks it can send 9000 byte packets to R2, which can only receive 1500
- Drop happens at the switch, where no ICMP can be sent.