Problems. Internet measurements build up colossal data collections. This data may have various quality characteristics. Unfortunately, these characteristics are commonly not provided along with the data or ignored. If the current trend continues, we may expect an unprecedented scale of generating, storing, and communicating more and more low-quality data overfilling the available capacities. Without significant changes, existing infrastructure will not scale up these features to massive data arrays, which will have to be communicated, computed, and controlled.

Roads to solutions. Point #1: Metadata that describes the measurement conditions, including sensors, their characteristics, needs to be provided along with the measurement results. Unfortunately, data integrity could be violated due to hacking attacks.

Point #2: Infrastructure security characteristics need to be also provided. The metadata could grow up to huge volumes.

Point #3: Metadata needs to be processed, producing limited, preferably numerical metrics sets, which are given to a data user. However, the user can still be overwhelmed with these data.

Point #4: Users prefer getting knowledge and knowledge-based service that help them solve their problems. To produce this knowledge, data + metadata have to be processed together (see Fig. 1) to get data quality that is, by definition, the degree how much the data fits the user needs.

Our major solution is to develop methodologies and technologies that will provide an end user or an application with measurement data of a specified quality at the point of use. This goal could be achieved by the dynamic selection, preferably in real-time, of the data sources and communication paths from them to the points of data use. In our NSF funded research (award ACI-1547301), we are building a proof-of-the-concept design, which will be used to develop, verify and promote a comprehensive methodology for DQ evaluation focusing on an integration of cybersecurity with other diverse metrics reflecting DQ, such as accuracy, reliability, timeliness, and security into a single methodological and technological framework. The brief framework operation is presented in fig. 2.