Challenges in RF Data Acquisition, Management, Dissemination

Session 3: Mobile and Wireless Measurement Challenges

Kaushik Chowdhury

Professor and Associate Director for Institute for the Wireless IoT Northeastern University

Community Pain Points [for the Wireless Community]

- No representative datasets for the wireless community
 - MNIST for image processing community
- Growing interest in ML/AI, hampered by lack of diverse datasets
 - No clear categorization of technology options that intuitively leads to discovery of resources
 - Need for a centralized "focal point" for the wireless community
- Lack of tools to create datasets on wireless testbeds
 - External testbeds are complex, need time investment
 - Privacy concerns
- Lack of tools to share, disseminate datasets
 - Lack of community leadership for standardized metadata representation and sharing
 - Lack of education and awareness for wireless engineers

Sources of Wireless Datasets

NSF PAWR Platforms – Rich Sources of Datasets

NSF PAWR PLATFORMS

POWDER

Salt Lake City, UT

Software defined networks and mMIMO

COSMOS

West Harlem, NY

mmWave, full duplex and backhaul research

AERPAW

Raleigh, NC

Unmanned aerial vehicles, mmWave and mobility

COLOSSEUM

Spectrum sharing, mMIMO, mobility, IoT, mesh networks

Example Problem: RF Fingerprinting

Example Measurement and Dataset Generation

POWDER PAWR platform University of Utah campus, in Salt Lake City, spanning 6 km², composed of SDRs and open-source software stacks.

Reference: https://powderwireless.net

Example Measurements & Dataset

DOWNLOADS ~

CONTACT US

OUTREACH

Home

POWDER RF Fingerprinting Dataset

Datasets for RF Fingerprinting on the POWDER Platform

ABOUT US ~

PEOPLE ~

PUBLICATIONS

Download Datasets:

Please use below link to download the dataset:

Dataset#1: Raw IQ samples of over-the-air transmissions from 4 Base Stations deployed in the POWDER platform, in Salt Lake City, Utah, USA.

HOME

These datasets were used for the paper "Trust in 5G Open RANs through Machine Learning: RF Fingerprinting on the POWDER PAWR Platform", IEEE GLOBECOM 2020. Any use of this dataset, which results in an academic publication or other publication that includes a bibliography, should contain a citation to our paper. Here is the reference for the work:

Conference version: PDF

G. Reus-Muns, D. Jaisinghani, K. Sankhe and K. R. Chowdhury, "Trust in 5G Open RANs through Machine Learning: RF Fingerprinting on the POWDER PAWR Platform," IEEE Globecom, 7-11 December 2020, Taipei, Taiwan.

Copy Bibtex

https://genesys-lab.org/powder

Colosseum

- 900 TB of Network Attached Storage (NAS)
- 171 high-performance servers
- 256 USRP X310s (128 as communications devices, 128 as part of the channel emulator)
- 18 10G switches
- 19 clock distribution systems
- 25.6 GHz total instantaneous bandwidth
- 52 TB/s of digital RF data
- 320 FPGAs
- Hundreds of high-speed optical connections
- Software-based traffic generation solutions hosted on a pool of dedicated servers
- Full-mesh networking capability
- 21 racks of radios, FPGAs, servers and support equipment

Example Experiment Design

Reservation A - Channels 0,1,4,5 Reservation B - Channels 2,3,6,7,8,9 Connectivity Disabled

Example Measurements & Dataset

- Cellular network w/ srsLTE: 6 interfering base stations w/ 24 users
- Downlink video streaming
- Pedestrian user mobility
- Real-world scenario with base station locations in Boston Public Garden

Open Challenges: Technical

Create representative community dataset(s)

- MNIST for wireless
- One central stop for the community

Accelerate 6G research

 Real-time and offline dataset generation, processing tools Influence design of future experimental testbeds

 Show feasibility of native support/APIs for community testbeds

Open Challenges: Education and Workforce Dev

Train "tomorrow's" wireless engineer

- Train wireless/networking workforce on how to build, store, share datasets
- Impact broad curriculum changes

Bridge communities

- Provide resources, competitions for wireless engineers to build collaborations with ML/AI experts
- Engage with industry as they roll out new tools

Democratize access to wireless datasets

- Enable anyone to create datasets with minimal expert knowledge
- New hands on activities K-12 and beyond

Community Needs

Thank You