Table 2 (Source: skitter-f.isc.org (204.152.184.98) - 8 october 1999)
Table 2: identification of ASes dominating the paths
Table 2 lists the most prevalent AS number at each hop with the most popular ASes colored according to the key above the table. The number in parentheses is the proportion of paths at that hop that belong to the listed AS. Rows of the table that seem to contain routing inefficiencies, for example, going from one AS to a second and then back to the first, are probably not routing mistakes. The data we display is aggregated, so the AS listed is the most prevalent one at that hop for a particular path length, but not the only AS present in the data.
frequency in table | ASs | |||
118 | 701(ALTERNET-AS) | |||
53 | 3557(VIX) | |||
29 | 4713(OCN) | 1(BBNPLANET) | ||
24 | 3211() | |||
17 | 1267(IUNET-AS) | |||
15 | 4732(DDI) | |||
14 | 1849(PIPEX-AS) | |||
13 | 3561(CWUSA) | |||
9 | 2516(JNIC-ASN) | |||
8 | 2914(VERIO) | 702(ALTERNET-AS) | ||
6 | 6461(ABOVENET) | |||
5 | 3303() | 5551(CORINET) | 5673(PBI-NET-BLK) | |
4 | 1239(SprintLink) | 6774(BELGACOM) | ||
2 | 286(EUNET-AS) | 11388(MAXIM) | 6747(LATTELEKOM) | 517(XLINK-UKA) |
1 | 1309(FRANCE-ASNBLOCK-AS) | 3915(BEST) | 6939(HURRICANE) |
total path's length | num of paths found | hop 1 | hop 2 | hop 3 | hop 4 | hop 5 | hop 6 | hop 7 | hop 8 | hop 9 | hop 10 | hop 11 | hop 12 | hop 13 | hop 14 | hop 15 | hop 16 | hop 17 | hop 18 | hop 19 | hop 20 | hop 21 | hop 22 | hop 23 | hop 24 | hop 25 | hop 26 | hop 27 |
2 | 3 | 3557(1.00) | 3557(1.00) | |||||||||||||||||||||||||
3 | 2 | 3557(1.00) | 3557(0.50) | 3557(0.50) | ||||||||||||||||||||||||
4 | 16 | 3557(1.00) | 3557(0.88) | 1239(0.56) | 6939(0.31) | |||||||||||||||||||||||
5 | 60 | 3557(1.00) | 3557(0.88) | 1239(0.50) | 11388(0.18) | 11388(0.18) | ||||||||||||||||||||||
6 | 369 | 3557(1.00) | 3557(1.00) | 1239(0.61) | 5673(0.30) | 5673(0.30) | 5673(0.26) | |||||||||||||||||||||
7 | 411 | 3557(1.00) | 3557(1.00) | 1239(0.40) | 6461(0.13) | 6461(0.12) | 5673(0.11) | 5673(0.10) | ||||||||||||||||||||
8 | 772 | 3557(1.00) | 3557(1.00) | 701(0.41) | 6461(0.22) | 6461(0.20) | 701(0.15) | 701(0.13) | 3915(0.09) | |||||||||||||||||||
9 | 1134 | 3557(1.00) | 3557(1.00) | 701(0.39) | 6461(0.37) | 6461(0.34) | 701(0.15) | 701(0.12) | 2914(0.06) | 2914(0.07) | ||||||||||||||||||
10 | 2967 | 3557(1.00) | 3557(1.00) | 701(0.63) | 701(0.53) | 701(0.52) | 701(0.51) | 701(0.46) | 701(0.43) | 701(0.42) | 701(0.24) | |||||||||||||||||
11 | 3859 | 3557(1.00) | 3557(1.00) | 701(0.58) | 701(0.53) | 701(0.48) | 701(0.47) | 701(0.30) | 701(0.27) | 701(0.26) | 3561(0.07) | 3561(0.06) | ||||||||||||||||
12 | 4940 | 3557(1.00) | 3557(1.00) | 701(0.64) | 701(0.62) | 701(0.60) | 701(0.58) | 701(0.32) | 701(0.29) | 701(0.29) | 3561(0.09) | 3561(0.08) | 3561(0.07) | |||||||||||||||
13 | 3922 | 3557(1.00) | 3557(1.00) | 701(0.61) | 701(0.61) | 701(0.58) | 701(0.55) | 701(0.35) | 701(0.32) | 701(0.31) | 3561(0.07) | 3561(0.06) | 3561(0.04) | 3561(0.04) | ||||||||||||||
14 | 3850 | 3557(1.00) | 3557(1.00) | 701(0.60) | 701(0.62) | 701(0.59) | 701(0.57) | 701(0.36) | 701(0.33) | 701(0.32) | 3561(0.08) | 3561(0.08) | 4713(0.05) | 4713(0.05) | 4713(0.05) | |||||||||||||
15 | 2774 | 3557(1.00) | 3557(1.00) | 701(0.59) | 701(0.58) | 701(0.58) | 701(0.56) | 701(0.37) | 701(0.33) | 701(0.33) | 4713(0.07) | 4713(0.07) | 4713(0.08) | 4713(0.08) | 4713(0.08) | 4713(0.08) | ||||||||||||
16 | 2190 | 3557(1.00) | 3557(1.00) | 701(0.62) | 701(0.60) | 701(0.59) | 701(0.58) | 701(0.41) | 701(0.36) | 701(0.36) | 4713(0.10) | 4713(0.10) | 4713(0.11) | 4713(0.11) | 4713(0.11) | 4713(0.11) | 4713(0.11) | |||||||||||
17 | 1544 | 3557(1.00) | 3557(1.00) | 701(0.69) | 701(0.67) | 701(0.67) | 701(0.66) | 701(0.42) | 701(0.35) | 701(0.35) | 702(0.08) | 702(0.08) | 4713(0.08) | 4713(0.08) | 4713(0.08) | 4713(0.08) | 4713(0.08) | 4713(0.08) | ||||||||||
18 | 1224 | 3557(1.00) | 3557(1.00) | 701(0.70) | 701(0.67) | 701(0.67) | 701(0.67) | 701(0.38) | 701(0.33) | 701(0.33) | 3561(0.10) | 3561(0.10) | 4713(0.10) | 4713(0.10) | 4713(0.09) | 4713(0.10) | 4713(0.10) | 4713(0.10) | 4713(0.10) | |||||||||
19 | 691 | 3557(1.00) | 3557(1.00) | 701(0.69) | 701(0.67) | 701(0.68) | 701(0.68) | 701(0.40) | 701(0.36) | 701(0.35) | 702(0.10) | 702(0.10) | 702(0.09) | 2516(0.09) | 1(0.07) | 1849(0.06) | 1849(0.06) | 1849(0.06) | 1849(0.06) | 1849(0.06) | ||||||||
20 | 436 | 3557(1.00) | 3557(1.00) | 701(0.67) | 701(0.66) | 701(0.66) | 701(0.65) | 701(0.40) | 701(0.36) | 701(0.36) | 2516(0.16) | 2516(0.16) | 2516(0.16) | 2516(0.16) | 4732(0.15) | 4732(0.15) | 4732(0.15) | 4732(0.15) | 4732(0.14) | 4732(0.12) | 4732(0.12) | |||||||
21 | 244 | 3557(1.00) | 3557(1.00) | 701(0.68) | 701(0.67) | 701(0.66) | 701(0.67) | 701(0.39) | 701(0.36) | 701(0.36) | 2516(0.15) | 2516(0.15) | 2516(0.14) | 2516(0.14) | 4732(0.12) | 4732(0.12) | 4732(0.12) | 4732(0.12) | 4732(0.12) | 4732(0.12) | 4732(0.11) | 4732(0.11) | ||||||
22 | 95 | 3557(1.00) | 3557(0.99) | 701(0.66) | 701(0.64) | 701(0.60) | 701(0.61) | 701(0.26) | 701(0.24) | 701(0.23) | 1(0.19) | 1(0.19) | 1(0.19) | 1(0.19) | 1(0.17) | 3303(0.13) | 3303(0.13) | 3303(0.13) | 3303(0.13) | 3303(0.12) | 517(0.09) | 517(0.09) | 1309(0.09) | |||||
23 | 45 | 3557(1.00) | 3557(1.00) | 701(0.60) | 701(0.64) | 701(0.58) | 701(0.58) | 2914(0.27) | 701(0.24) | 701(0.24) | 702(0.16) | 702(0.16) | 702(0.16) | 286(0.13) | 286(0.13) | 1849(0.13) | 1849(0.13) | 1849(0.13) | 1849(0.13) | 1849(0.13) | 1849(0.13) | 1849(0.13) | 1849(0.13) | 1849(0.13) | ||||
24 | 15 | 3557(1.00) | 3557(1.00) | 701(0.67) | 701(0.67) | 701(0.67) | 701(0.67) | 1(0.47) | 1(0.47) | 1(0.47) | 1(0.47) | 1(0.47) | 1(0.47) | 1(0.47) | 3211(0.33) | 3211(0.33) | 3211(0.33) | 3211(0.33) | 3211(0.33) | 3211(0.33) | 3211(0.33) | 3211(0.33) | 1267(0.33) | 1267(0.33) | 1267(0.33) | |||
25 | 18 | 3557(1.00) | 3557(1.00) | 701(0.78) | 701(0.78) | 701(0.78) | 701(0.78) | 1(0.78) | 1(0.78) | 1(0.78) | 1(0.78) | 1(0.78) | 1(0.78) | 1(0.78) | 3211(0.78) | 3211(0.78) | 3211(0.78) | 3211(0.78) | 3211(0.78) | 3211(0.78) | 3211(0.78) | 3211(0.78) | 1267(0.78) | 1267(0.78) | 1267(0.78) | 1267(0.78) | ||
26 | 6 | 3557(1.00) | 3557(1.00) | 701(0.83) | 701(0.83) | 701(0.83) | 701(0.83) | 1(0.67) | 1(0.67) | 1(0.67) | 1(0.67) | 1(0.67) | 1(0.67) | 1(0.67) | 3211(0.50) | 3211(0.50) | 3211(0.50) | 3211(0.50) | 3211(0.50) | 3211(0.50) | 3211(0.50) | 3211(0.50) | 1267(0.50) | 1267(0.50) | 1267(0.50) | 1267(0.50) | 1267(0.50) | |
27 | 3 | 3557(1.00) | 3557(1.00) | 2914(0.33) | 701(0.33) | 2914(0.33) | 701(0.33) | 2914(0.33) | 2914(0.33) | 2914(0.33) | 1(0.33) | 1(0.33) | 6774(0.33) | 6774(0.33) | 6774(0.33) | 6774(0.33) | 5551(0.33) | 5551(0.33) | 5551(0.33) | 5551(0.33) | 5551(0.33) | 6747(0.33) | 6747(0.33) | 1267(0.33) | 1267(0.33) | 1267(0.33) | 1267(0.33) | 1267(0.33) |
The table is constrained because paths are sorted by path length (number of hops in the path). The next two images relax this constraint, but try to capture this same information.